
SMASH: A Common Storage Engine for
Modern Memory and Storage Hierarchies
SPP 2377 Annual Meeting 2023

Heterogeneous Use Cases + Hardware
• Scientific research requires data-intensive analyses
• Workflows rely on varying performance characteristics
• Storage technology depending performance characteristics (e.g., per-

sistence, granularity, capacity, latency)
• Database management systems and file systems have to handle he-

terogeneous storage which accommodate workflows

• Goal 1: Intelligent data placement and retrieval
– Utilize different memory and storage technologies optimized to

their characteristics
• Goal 2: Native data transformations

– Hardware-accelerated compression to efficiently decrease data vo-
lume

• Goal 3: Use-case universality and reusability
– Building block and prototypical software library for many

workloads

Storage Hierarchy

Access latency relative to magnitude in nanoseconds

L1
Cache

L1
Cache

L2 Cache

L2 Cache

L3 Cache

100 101 102 103 104 105 106 109107 108

1 ns 1 μs 1 ms 1 s

• Wide range of technologies and protocols in use; each exhibiting per-
formance for certain data niches

• Challenge: Direct data efficiently to appropriate devices
– Technologies offer optimal utilization in different access scenarios
– For example: random workflows to NVRAM/NVMe SSD

• Focus: DBMS & HPC use cases
– Both handle high volumes and traffic of data

SMASH Architecture

Haura

Buffer

Children

������

NVRAM DRAM

SSD

HDDData DataData ��� ���

Key-Value API Object API

JULEA DBMS/FS

Data

• Hierarchical Bε-trees
– Optimization per tier can be made within a single tree
– Modifications are buffered in nodes with determinant ε
– Write-optimized data structure for block devices

• API: Key-Value and Object interface
– Supports most semantics required in DBMS and HPC domains

Work Packages
• WP1: Common Storage Engine ⊚

– 1.1 Data structures and management ✓
– 1.2 Data placement and migration ⊚
– 1.3 Application programming interface ✓

• WP2: Data Transformations
– 2.1 Data transformation algorithms
– 2.2 External data transformation
– 2.3 Hardware acceleration

• WP3: Use Cases and Evaluation ⊚

– 3.1 HPC applications and workflows ⊚
– 3.2 Database applications and workflows ⊚
– 3.3 Robustness tests ⊚

Placement Decisions
PoolTree Policy

• Policies perform node-granular actions: Prefetch, Replicate, or Migrate
• Migrate incurs higher write-amplification

– Lower costs with logical block addresses in the storage stack
– Write-amplification of migrations significantly reduced
– Defragmentation may use the same base procedure (as is employ-

ed in Linux main memory virtual address space)
– NVRAM makes this feasible with small granularity and alleviates

consistency concerns
• Messages propagate information to actors, their hot paths isolated
• Exchangable Policies allow for workflow-dependent adjustments
• Policy Evaluation in separate discrete-event simulation for fast feed-

back

NVRAM-optimized Data Structures
• The engine leverages NVRAM to offer low-

latency read and write operations
• Storage-optimized data structures are used

for Bε-tree nodes
• An NVRAM-optimized hash table is used to

cache recent reads
• NVRAM’s direct connection to memory

bus allows for partial or more granular
reads/writes on the nodes in NVRAM

• Any processing on the nodes on block stora-
ge requires them to be in DRAM

• The benefits of granular reads on the tree no-
des in NVRAM are illustrated in Figure 1

1

64

40
96

To
ta

lD
at

a
Re

ad
(M

B)

40
96

20
48

10
24 51

2
25

6
12

8 64 32 16 8 4 2

0

200

400

600

Block Size (bytes)

Ti
m

e
(m

s)

DRAM (Sequential) DRAM (Random)

NVRAM (Sequential) NVRAM (Random)

SSD NVMe (Sequential) SSD NVMe (Random)

Bytes Read (NVRAM) Bytes Read (SSD NVMe)

Figure 1: The data in the nodes on NVRAM, DRAM, and SSD NVMe is accessed in
different settings. It includes accessing the data partially, such as reading only ints and
substrings (the sizes are mentioned on the horizontal axis). The cost for the nodes on
SSD NVMe is high, as the whole node is required to be fetched into DRAM irrespective
of the case.

1Contact
Sajad Karim, Michael Kuhn, Gunter Saake, Johannes Wünsche David Broneske

E-mail: {skarim,mkuhn,saake,jwuensch}@ovgu.de broneske@dzhw.eu
University of Magdeburg DZHW Hannover

Follow us

https://
smash-spp2377.
github.io

https://
github.com/
julea-io/haura


